

Environnement

ARM-cumulus: a test case for shallow convection

Jing Yang

Paul Vaillancourt

18 March, 2015

Outline

- Case description
- Intercomparison of SCMs
- Initial profiles, and forcing fields
- Model set-up and configurations
- Sensitivity tests and results

Canada

ARM - cumulus

Case: An idealization of observations

Location: <u>ARM</u> site on the Southern Great Plains (USA). Lat= 36.6° , Lon= -97.5°; ME (MF)=320 m, Z₀=0.035 m (set in geophysical file)

Time: 21 June 1997.

An **intercomparison** by the GCSS WG-1 (GEWEX Cloud-System Study), aims to look at the development of shallow convection over land. (BOMEX, ATEX focused on shallow convection over sea).

Diurnal cycle of shallow cumulus convection (non-stationary continent case); ARM-Cumulus clouds developed at the top of an initially clear convective boundary layer.

ARM - radar

Radar reflectivity versus time at ARM site

ARM - LES

Relative humidity

Results of SCMs:

Although most SCMs were able to simulate a cumulus cloud, the SCMs typically suffered from the following deficiencies:

- too high cloud fractions and cloud liquid water.
- too shallow cloud layers, too moist in the cloud layer (too little activity, for most models with mass flux closure)
- difficulties with diurnal cycle (cloud disappearance after sunset). unrealistic thermodynamic profiles.
- considerable numerical noise.

SCM - Initial conditions

Forcing conditions - surface fluxes

Surface sensible and latent heat fluxes to be imposed in simulation

Time (s)	H (Wm ⁻²)	LE (Wm ⁻²)
41400 (11.5 UTC)	-30	5
55800 (15.5 UTC)	90	250
64800 (18 UTC)	140	450
68400 (19 UTC)	140	500
77400 (21.5 UTC)	100	420
86400 (00 ⁺ UTC)	-10	180
93600 (02 ⁺ UTC)	-10	0

Irregular time interval, linear interpolate to half hourly fields

Canada

Forcing conditions - surface fluxes

Forcing conditions - advection

Large scale forcing terms are estimated using a variational method on obs Combined horizontally & vertically advective tendency

Forcing conditions - radiation

Radiative tendencies are estimated from a simulation with interactive radiation scheme

Diagnosed LW, SW, and total radiation heating rates (averaged across horizontal domain and over one hour).

Canada

Environment Environnement Canada

Forcing conditions - advection & radiation

Simple representation of advection and radiation: Linear interpolation is used to calculate forcings at intermediate times.

Time (s)	Α _θ	R_{θ}	A _{qt}
	(K/hour)	(K/hour)	((g/kg)/hour)
41400 (11.30)	0.000	-0.125	+0.080
52200 (14.30)	0.000	0.000	+0.020
63000 (17.30)	0.000	0.000	-0.040
73800 (20.30)	-0.080	0.000	-0.100
84600 (23.30)	-0.160	0.000	-0.160
93600 (02.00+)	-0.160	-0.100	-0.300

Forcing conditions - advection & radiation

For z < 1000m

$$\frac{\partial \theta}{\partial t} = ADV_{\theta} + RAD_{\theta} = A_{\theta} + R_{\theta}$$
$$\frac{\partial q_t}{\partial t} = ADV_{qt} = A_{qt}$$

Forcing files (half hourly): ADV_θ -> ADV_TT ADV_HU

For 1000m <= z <= 3000m

$$\frac{\partial \theta}{\partial t} = ADV_{\theta} + RAD_{\theta} = (A_{\theta} + R_{\theta}) \left(1 - (z - 1000)/2000\right)$$
$$\frac{\partial q_t}{\partial t} = ADV_{qt} = A_{qt} \left(1 - (z - 1000)/2000\right)$$

For z > 3000m

$$\frac{\partial \theta}{\partial t} = ADV_{\theta} + RAD_{\theta} = 0$$

$$\frac{\partial q_t}{\partial t} = ADV_{qt} = 0$$

Magnitudes of large-scale advective forcing and radiative tendencies to be applied in lowest 1000 m. Reduced tendencies are to be applied above 1000 m.

Environment Environnement Canada Canada

Forcing conditions - advection & radiation

Model configuration and set-up

&convection_cfgs

= 'nil' ,

DEEP

BKF_LDEEP = .false. ,BKF_LSHAL = .false. ,
BKF_LDOWN = .true. , BKF_LSHALM = .false. ,
BKF_LREFRESH = .false. ,
BKF_LSETTADJ = .false. ,
BKF_XTADJD = 3600. , BKF_XTADJS = 10800. ,
BKF KENS = 0 . BKF KCH = 0 .
BKE KTDIA = 1 BKE KICE = 1
BKF_LCH1CONV = .false.
KFCDEPTH = 4000.
KFCDLEV = 0.5
KFCDET = 0.
KFCRAD = 1500.
KFCTIMEA = 3600.
$\mathbf{KFCTIMEC} = 3600.$
KECTRIG4 = 0.0.005005
KECTRIGI = 0.01
KECTRIGIAT = true
TD[C] AT = 25.20
$[\mathbf{X}] = \mathbf{Z}_{\mathbf{Y},\mathbf{Y}} \mathbf{V}_{\mathbf{Y}},$
SHAL = 'Ktrsnt', 'Ktrsnt_mg'

AGREGAT= .true.ICELAC= .false.ICEMELT= .true.IMPFLX= .false.LIMSNODP= .true.SCHMSOL= 'ISBA'ZOTLAT= 25.,30.ZTA= -1.,
&physics_cfgs
RADIA = 'nil', KNTRAD_S = '30m' , RADFLTR = .false. , TS_FLXIR = .true. , STRATOS = .true. ,
GWDRAG = 'nil' , NON_ORO = .false. , LMETOX = .false. , LONGMEL = 'boujo' or 'blac62' , FLUVERT = 'clef' , PBL_SHAL = 'nil' / 'conres' , STCOND = 'nil' , INILWC = .false. , KTICEFRAC = .false. , PCPTYPE = 'bourge' , QCO2 = 380.0 , Canada

Model configuration and set-up

Sensitivity tests of shallow convection schemes:

Shal=ktrsnt; (water conserved) Shal=ktrsnt_mg; Shal=bechtold (available soon)

No deep convection No explicit microphysics

No radiation scheme

Land surface scheme: ISBA

Fluvert: CLEF (will do moistTKE sensitivity test later)

Tried different horizontal Resolution: 0.25, 1 Tried high vertical resolution (L80, L120)

SCM results- cloud base height

SCM results- cloud top height

SCM results - potential temperature

SCM results- UU

_

SCM results - cloud fraction

SCM results- cloud LWC

SCM results- potential temperature

SCM results- total water content

SCM results- RH

SCM results- UU

SCM results- buoyancy

+

dä

SCM results- dissipation

SCM results- shear term

SCM results- transport (vertical diffusion)

+

SCM results

SCMs typically suffered from the following deficiencies:

- too high cloud fractions and cloud liquid water.
- too shallow cloud layers, too moist in the cloud layer (too little activity, for most models with mass flux closure) vertical transport is not enough, convective transport
- difficulties with diurnal cycle (cloud disappearance after sunset) delayed (no cloud dissipitation in ktrsnt_mg)
- unrealistic thermodynamic profiles.
- considerable numerical noise (especially for L120).

